Abstract
A micromechanical scheme is developed for predicting the morphology and interfacial energy of the interface layer between the parent phase and internally twinned martensite. Low-energy morphologies are determined by minimizing, with respect to shape parameters, the elastic microstrain energy associated with local incompatibility of transformation strains. The computational scheme involves a finite element solution to a problem of non-linear elasticity with eigenstrains, shape sensitivity analysis with respect to general shape parametrization and minimization employing a gradient-based algorithm. As an application, low-energy morphologies are studied for the austenite–martensite interface in the cubic-to-orthorhombic transformation in a CuAlNi shape memory alloy. Discussion of the results of the analysis includes comparison to alternative simplified methods in terms of the predicted morphologies and the corresponding interfacial energies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have