Abstract

This paper relates to the energetic and exergetic analysis of single-, double- and triple-effect distiller driven by solar energy. Energetic analysis makes it possible to define an applicable zone of operation according to the following criteria: water rejection limit to 50%, maximum salinity limit to 5.5%, and minimum energy consumption. This analysis also makes it possible to quantify energies: energy necessary for the vapour condensation and the power consumption per unit mass of pure water. Exergetic analysis makes it possible to show that the most significant exergy losses are condenser losses and water alimentation losses and that the condenser losses decrease with the number of effects. The exergetic efficiencies have also been found. They are located between 19 and 26% for a triple-effect system, between 17 and 20% for a double-effect system, and less than 4% for the single-effect system. Consequently, it seems interesting to implement a double- or triple-effect system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.