Abstract

Gas-phase proton-bound complexes between a chiral resorcin[4]arene and some representative amino acids, that is, L- and D-alanine or L- and D-serine, were generated in the source of a Fourier transform ion cyclotron resonance mass spectrometer. Gas-phase exchange of the amino acid from the diastereomeric complexes with the enantiomers of 2-butylamine exhibits a significant enantioselectivity, which depends not only upon the configuration of the leaving guest but also on that of the incoming amine. These findings, coupled with molecular dynamic calculations, point to the observed gas-phase enantioselectivity as determined by the effects of the resorcin[4]arene chiral cavity upon the diastereomeric exchange transition structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.