Abstract

Microwave power transfer (MPT) delivers energy wirelessly from stations called power beacons (PBs) to mobile devices by microwave radiation. This provides mobiles practically infinite battery lives and eliminates the need of power cords and chargers. To enable MPT for mobile charging, this paper proposes a new network architecture that overlays an uplink cellular network with randomly deployed PBs for powering mobiles, called a hybrid network. The deployment of the hybrid network under an outage constraint on data links is investigated based on a stochastic-geometry model where single-antenna base stations (BSs) and PBs form independent homogeneous Poisson point processes (PPPs) and single-antenna mobiles are uniformly distributed in Voronoi cells generated by BSs. In this model, mobiles and PBs fix their transmission power at p and q, respectively; a PB either radiates isotropically, called isotropic MPT, or directs energy towards target mobiles by beamforming, called directed MPT. The model is applied to derive the tradeoffs between the network parameters including p, q, and the BS/PB densities under the outage constraint. First, consider the deployment of the cellular network. It is proved that the outage constraint is satisfied so long as the product the BS density decreases with increasing p following a power law where the exponent is proportional to the path-loss exponent. Next, consider the deployment of the hybrid network assuming infinite energy storage at mobiles. It is shown that for isotropic MPT, the product between q, the PB density, and the BS density raised to a power proportional to the path-loss exponent has to be above a given threshold so that PBs are sufficiently dense; for directed MPT, a similar result is obtained with the aforementioned product increased by the array gain. Last, similar results are derived for the case of mobiles having small energy storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.