Abstract

Exploring catalytic reaction mechanisms is crucial for understanding chemical processes, optimizing reaction conditions, and developing more effective catalysts. We present a reaction-agnostic framework based on high-throughput deep reinforcement learning with first principles (HDRL-FP) that offers excellent generalizability for investigating catalytic reactions. HDRL-FP introduces a generalizable reinforcement learning representation of catalytic reactions constructed solely from atomic positions, which are subsequently mapped to first-principles-derived potential energy landscapes. By leveraging thousands of simultaneous simulations on a single GPU, HDRL-FP enables rapid convergence to the optimal reaction path at a low cost. Its effectiveness is demonstrated through the studies of hydrogen and nitrogen migration in Haber-Bosch ammonia synthesis on the Fe(111) surface. Our findings reveal that the Langmuir-Hinshelwood mechanism shares the same transition state as the Eley-Rideal mechanism for H migration to NH2, forming ammonia. Furthermore, the reaction path identified herein exhibits a lower energy barrier compared to that through nudged elastic band calculation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.