Abstract

Abstract Empathy seems to rely on our ability to faithfully simulate multiple aspects of others’ inferred experiences, often using brain structures we would use during a similar experience. Much neuroimaging work in this vein has related empathic tendencies to univariate correlates of simulation strength or salience. However, novel evidence suggests that empathy may rely on the multivariate distinctiveness of these simulations. Someone whose representations of painful and non-painful stimulation are more distinct from each other may more accurately simulate that experience upon seeing somebody else experience it. We sought to predict empathic tendencies from the dissimilarity between neural activity patterns evoked by observing other people experience pain and touch and compared those findings to traditional univariate analyses. In support of a simulationist perspective, diverse observed somatosensory experiences were best classified by activation patterns in contralateral somatosensory and insular cortices, the same areas that would be active were the subject experiencing the stimuli themselves. In support of our specific hypothesis, the degree of dissimilarity between patterns for pain and touch in distinct areas was each associated with different aspects of trait empathy. Furthermore, the pattern dissimilarity analysis proved more informative regarding individual differences than analogous univariate analyses. These results suggest that multiple facets of empathy are associated with an ability to robustly distinguish between the simulated states of others at corresponding levels of the processing hierarchy, observable via the distinguishability of neural patterns arising with those states. Activation pattern dissimilarity may be a useful tool for parsing the neuroimaging correlates of complex cognitive functions like empathy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.