Abstract

Abstract In the past decade, exploration of spontaneous blood-oxygen-level-dependent (BOLD) signal fluctuations has expanded beyond the brain to include the spinal cord. While most studies have predominantly focused on the cervical region, the lumbosacral segments play a crucial role in motor control and sensory processing of the lower limbs. Addressing this gap, the aims of the current study were two-fold: first, confirming the presence and nature of organized spontaneous BOLD signals in the human lumbosacral spinal cord; second, systematically assessing the impact of various denoising strategies on signal quality and functional connectivity (FC) patterns. Given the susceptibility of spinal cord fMRI to noise, this step is pivotal to ensure the robustness of intrinsic FC. Our findings uncovered bilateral FC between the ventral and dorsal horns. Importantly, these patterns were consistently observed across denoising methods and demonstrating fair to excellent split-half temporal stability. Importantly, the evaluation of diverse denoising strategies highlighted the efficacy of physiological noise modeling (PNM)-based pipelines in cleaning the signal while preserving the strength of connectivity estimates. Together, our results provide evidence of robust FC patterns in the lumbosacral spinal cord, thereby paving the way for future studies probing caudal spinal activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.