Abstract

Particulate matter (PM) as a major air pollutant, generally includes filterable particulate matter (FPM) and condensable particulate matter (CPM). CPM has gradually attracted widespread attention recently, due to its increasing proportion in total PM emissions. Fluid catalytic cracking (FCC) units, the main emission source in refineries, mostly use wet flue gas desulfurization (WFGD), which will produce a large amount of CPM. However, CPM emission and composition of FCC units are actually unclear. In this work, we aimed to understand the emission characteristics of CPM in FCC flue gas and provide some potential control strategies. Here, the stack tests of three typical FCC units were conducted to monitor FPM and CPM, and the field monitoring FPM results are higher than the concentration provided by Continuous Emission Monitoring System (CEMS). The emission of CPM is at a high-level concentration from 28.88 to 86.17 mg/Nm3, divided into inorganic fraction and organic fraction. The inorganic fraction is mainly composed in CPM, where water-soluble ions including SO42−, Na+, NH4+, NO3−, CN−, Cl−, and F−, are the major contributors. Moreover, a variety of organic compounds are detected as qualitative analysis of organic fraction in CPM, which can be roughly classified into alkanes, esters, aromatics, and others. Finally, on the basis of the understanding of the characteristics of CPM, we have proposed two strategies for CPM control. This work is expected to advance CPM emission regulation and control in FCC units.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call