Abstract
Experience remodels cortical connectivity during developmental windows called critical periods. Experience-dependent regulation of synaptic strength during these periods establishes circuit functions that are stabilized as critical period plasticity wanes. These processes have been extensively studied in the developing visual cortex, where critical period opening and closure are orchestrated by the assembly, maturation, and strengthening of distinct synapse types. The synaptic specificity of these processes points towards the involvement of distinct molecular pathways. Attractive candidates are pre- and postsynaptic transmembrane proteins that form adhesive complexes across the synaptic cleft. These synapse-organizing proteins control synapse development and maintenance and modulate structural and functional properties of synapses. Recent evidence suggests that they have pivotal roles in the onset and closure of the critical period for vision. In this review, we describe roles of synapse-organizing adhesion molecules in the regulation of visual critical period plasticity and we discuss the potential they offer to restore circuit functions in amblyopia and other neurodevelopmental disorders.
Highlights
Sensitive periods for the development of brain function have been described in different species and brain areas, but it was the work of Hubel and Wiesel in cat and primate visual cortexes during the 1970s and 1980s that first shed light on the underlying circuit principles [1,2,3,4]
The parallel increase in interneuron expression of synapse-organizing adhesion proteins such as Neuroligins and SynCAMs further supports that synaptogenesis is an important factor in PV cell maturation [61]
While cell-surface expression levels of Neuroligins can be regulated by visual activity [86], it is the removal of Hevin in the visual cortex that impairs Neuroligin 1/Neurexin interaction and reduces the density of thalamic inputs (Figure 2) [85, 87]
Summary
Sensitive periods for the development of brain function have been described in different species and brain areas, but it was the work of Hubel and Wiesel in cat and primate visual cortexes during the 1970s and 1980s that first shed light on the underlying circuit principles [1,2,3,4]. The parallel increase in interneuron expression of synapse-organizing adhesion proteins such as Neuroligins and SynCAMs (see below) further supports that synaptogenesis is an important factor in PV cell maturation [61].
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have