Abstract
Information about a patient's state is critical for hospitals to provide timely care and treatment. Prior work on improving the information flow from emergency medical services (EMS) to hospitals demonstrated the potential of using automated algorithms to detect clinical procedures. However, prior work has not made effective use of video sources that might be available during patient care. In this paper we explore the use convolutional neural networks (CNNs) on raw video data to determine how well video data alone can automatically identify clinical procedures. We apply multiple deep learning models to this problem, with significant variation in results. Our findings indicate performance improvements compared to prior work, but also indicate a need for more training data to reach clinically deployable levels of success.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.