Abstract
Despite growing concerns over the health of global invertebrate diversity, terrestrial invertebrate monitoring efforts remain poorly geographically distributed. Machine-assisted classification has been proposed as a potential solution to quickly gather large amounts of data; however, previous studies have often used unrealistic or idealized datasets to train and test their models.In this study, we describe a practical methodology for including machine learning in ecological data acquisition pipelines. Here we train and test machine learning algorithms to classify over 72,000 terrestrial invertebrate specimens from morphometric data and contextual metadata. All vouchered specimens were collected in pitfall traps by the National Ecological Observatory Network (NEON) at 45 locations across the United States from 2016 to 2019. Specimens were photographed, and two separate machine learning paradigms were used to classify them. In the first, we used a convolutional neural network (ResNet-50), and in the second, we extracted morphometric data as feature vectors using ImageJ and used traditional machine learning methods to classify specimens. Issues stemming from inconsistent taxonomic label specificity were resolved by making classifications at the lowest identified taxonomic level (LITL). Taxa with too few specimens to be included in the training dataset were classified by the model using zero-shot classification.When classifying specimens that were known and seen by our models, we reached a maximum accuracy of 72.7% using eXtreme Gradient Boosting (XGBoost) at the LITL. This nearly matched the maximum accuracy achieved by the CNN of 72.8% at the LITL. Models that were trained without contextual metadata underperformed models with contextual metadata. We also classified invertebrate taxa that were unknown to the model using zero-shot classification, reaching a maximum accuracy of 65.5% when using the ResNet-50, compared to 39.4% when using XGBoost.The general methodology outlined here represents a realistic application of machine learning as a tool for ecological studies. We found that more advanced and complex machine learning methods such as convolutional neural networks are not necessarily more accurate than traditional machine learning methods. Hierarchical and LITL classifications allow for flexible taxonomic specificity at the input and output layers. These methods also help address the ‘long tail’ problem of underrepresented taxa missed by machine learning models. Finally, we encourage researchers to consider more than just morphometric data when training their models, as we have shown that the inclusion of contextual metadata can provide significant improvements to accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.