Abstract

Asymmetric regression is an alternative to conventional linear regression that allows us to model the relationship between predictor variables and the response variable while accommodating skewness. Advantages of asymmetric regression include incorporating realistic ecological patterns observed in data, robustness to model misspecification and less sensitivity to outliers. Bayesian asymmetric regression relies on asymmetric distributions such as the asymmetric Laplace (ALD) or asymmetric normal (AND) in place of the normal distribution used in classic linear regression models. Asymmetric regression concepts can be used for process and parameter components of hierarchical Bayesian models and have a wide range of applications in data analyses. In particular, asymmetric regression allows us to fit more realistic statistical models to skewed data and pairs well with Bayesian inference. We first describe asymmetric regression using the ALD and AND. Second, we show how the ALD and AND can be used for Bayesian quantile and expectile regression for continuous response data. Third, we consider an extension to generalize Bayesian asymmetric regression to survey data consisting of counts of objects. Fourth, we describe a regression model using the ALD, and show that it can be applied to add needed flexibility, resulting in better predictive models compared to Poisson or negative binomial regression. We demonstrate concepts by analyzing a data set consisting of counts of Henslow’s sparrows following prescribed fire and provide annotated computer code to facilitate implementation. Our results suggest Bayesian asymmetric regression is an essential component of a scientist’s statistical toolbox.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.