Abstract
Many legged robots have been developed, and some of them have already achieved dynamically stable bipedal and quadruped locomotion. Common characteristics of these conventional legged robots are that their motions are precisely manipulated by their control (i.e., gait and balance). In the case of ASIMO (Hirose et al., 2001) and HRP2 (Kaneko et al., 2004), their dynamically stable bipedal locomotion is based primarily on the Zero Moment Point (ZMP) concept, which was originally developed by Vukobratovic (Vukobratovic, 1969): the ZMP is a fictitious point on the ground plane, where the torques around the (horizontal) x and y axes (generated by ground reaction forces, inertial forces, and torques) are equal to zero. These robots dynamically stabilize their balance by manipulating the ZMP to remain within the support polygon area defined by their square feet, and their gait control is applied on top of the balance control. As a result, these conventional legged robots require rapid information processing and high-power drives to achieve locomotion. Therefore, they are characterized as having more complex control systems and larger energy consumption than those of biological locomotion. On the other hand, these design requirements (i.e., fast information processing and highpower drives) are regarded as disadvantageous in biologically inspired robotics. In the field, the specific behaviors and/or structures of biological organisms are imitated (Vogel, 1998) (Alexander, 2002) with robotic technology. As a result, the robot systems have simple design requirements compared to conventional robot systems, and achieve complex tasks. Thus, the design effort tends to focus on control complexity and energy requirements. A representative instance is the Passive Dynamic Walker (PDW), which was originally developed by McGeer (McGeer, 1990). The PDW has no controller (i.e., no sensor and no motor), and the structure is based on the physical characteristics of human walking: passive hip joints, latch knee joints, and curved feet. The PDW walks down a slope, and its structure exploits gravity as the driving force. This design principle has been applied to the Cornell Biped (Collins & Ruina, 2005) and Denise at TU Delft (Wisse, 2003), and the powered passive dynamic walkers achieved passive dynamic walking on a flat plane. In a summary of these two approaches, conventional robots require expensive design components to achieve dynamically stable locomotion. On the other hand, biologically inspired robots require physical characteristics that exploit their own dynamics to achieve
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have