Abstract

Biped walking is one of the major research targets in recent humanoid robotics, and many researchers are now interested in Passive Dynamic Walking (PDW) [McGeer (1990)] rather than that by the conventional Zero Moment Point (ZMP) criterion [Vukobratovic (1972)]. The ZMP criterion is usually used for planning a desired trajectory to be tracked by a feedback controller, but the continuous control to maintain the trajectory consumes a large amount of energy [Collins, et al. (2005)]. On the other hand, PDW enables completely unactuated walking on a gentle downslope, but PDW is generally sensitive to the robot's initial posture, speed, and disturbances incurred when a foot touches the ground. To overcome this sensitivity problem, ``Quasi-PDW'' [Wisse & Frankenhuyzen (2003); Sugimoto & Osuka (2003); Takuma, et al. (2004)] methods, in which some actuators are activated supplementarily to handle disturbances, have been proposed. Because Quasi-PDW is a modification of the PDW, this control method consumes much less power than control methods based on the ZMP criterion. In the previous studies of Quasi-PDW, however, parameters of an actuator had to be tuned based on try-and-error by a designer or on

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call