Abstract

Simple SummaryEnvironmental heat stress easily damages feed intake, intestinal health, and growth performance of broilers. Ellagic acid (EA), a natural polyphenol antioxidant in fruits or nuts, is beneficial to animal health. For the first time, we revealed that dietary EA improved antioxidant capacity and the intestinal barrier function of heat-stressed broilers probably via regulating gut microbiota. Therefore, it is proposed that EA could be exploited as a feed additive to alleviate heat stress-induced oxidative damages in broilers.Heat stress (HS) has been revealed to damage the antioxidant system and intestinal barrier function, which greatly threatens poultry production. The present study investigated the effects of dietary ellagic acid (EA) on the antioxidant system, gut barrier function, and gut microbiota of heat-stressed broilers. Arbor Acres 14-day-old broilers numbering 360 were randomly divided into six groups, including one negative control group (NC) and five experimental groups. The broilers in the NC group were supplemented with a basal diet at a normal temperature (23 ± 2 °C). The broilers in the experimental groups were supplemented with basal diets containing EA at different doses (0, 75, 150, 300, and 600 mg/kg) at HS temperature (35 ± 2 °C). The experiment lasted for 4 weeks. Results showed that dietary EA reduced the corticosterone (CORT), LPS, and diamine oxidase (DAO) levels in the serum of heat-stressed broilers. Additionally, dietary EA improved the antioxidant enzyme activity and mRNA levels of Nrf2/HO-1 in the ileum of heat-stressed broilers. The relative abundances of Streptococcus, Ruminococcus_torques, Rothia, Neisseria, Actinomyces, and Lautropia in the cecum were significantly reduced by the EA supplementation in a dose-dependent manner. Notably, the LPS, DAO, and MDA in the serum were revealed to be positively correlated with the relative abundances of Rothia, Neisseria, Actinomyces, and Lautropia, while the GSH-px, SOD, and CAT levels in the serum were negatively correlated with the relative abundances of Ruminococcus_torques, Rothia, Neisseria, Actinomyces, Streptococcus, and Lautropia. Taken together, dietary EA improved the antioxidant capacity, intestinal barrier function, and alleviated heat-stressed injuries probably via regulating gut microbiota.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.