Abstract

We fabricated 4H-SiC nanoribbon field effect transistors (FETs) of various channel thickness (tch) of 100~500 nm by a "top-down" approach, using a lithography and plasma etching process. We studied the dependence of the device transfer characteristics on the channel geometry. This demonstrated that fabricated SiC nanoribbon FETs with a tch of 100 nm show normally-on characteristics, and have a threshold voltage of -12 V, and a maximum transconductance value of 8.8 mS, which shows improved drain current degradation of the SiC nanoribbon FETs with tch = 100 nm at elevated temperature. This can be attributed to the improved heat dissipation, enhanced channel mobility, and together with widening of effective channel thickness depletion induced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.