Abstract
Increased neural activity of neurosecretory cells is accompanied by large increases in extracellular K+. The possibility that elevations of this ion might involve fluid redistribution and thus affect the size of the extracellular space and the relationship between pituicytes and axons in the rat neural lobe was explored using rapid freezing and freeze-substitution. Neural lobes were incubated for 15 min before freezing either in a normal medium or one containing a 10 mM increase in KCl (high KCl), a 10 mM increase in KCl balanced by an equimolar reduction in NaCl (high KCl-low NaCl), or only a 10 mM reduction in NaCl (low NaCl). A quantitative assessment of the region of good fixation was made to determine the relative fractions occupied by axons, pituicytes and the extracellular space near the neurohaemal contact zone. In addition, the percentage of basal lamina contacted by pituicytes and axons was calculated, as was the degree of enclosure of axons by pituicytes. In neural lobes incubated in normal medium, the extracellular space accounted for approximately 30% of the cross-sectional area of the neuropil and could be divided into two domains: an extended perivascular space (28-29% of total area); and a narrow (approximately 24 nm; approximately 1% of total) space between closely apposed neurosecretory processes or between these processes and pituicytes. Pituicytes occupied almost 60% of the basal lamina at the neurohaemal contact zone, while axons occupied approximately 20%.(ABSTRACT TRUNCATED AT 250 WORDS)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have