Abstract
A theoretical expression for the electroviscous effect in polyelectrolyte solutions, caused by the distortion of counterion-distribution and counterion flow around a polyion under a velocity gradient of solvent flow, was obtained to elucidate the characteristic behaviour of the viscosity of highly charged polyelectrolyte solutions observed at low salt concentration. The derivation of the theory was performed on the basis of the Navier—Stokes—Onsager equation, Poisson equation, and diffusion equations for low molecular ions by the use of a cell model (free-volume model) for a polyion. Energy dissipation was obtained without directly solving these equations. It was found that the derived expression of viscosity explained the experimental results satisfactorily, and that the streaming potential effect caused by the counterion flow played an essential role in the increase in viscosity of polyelectrolyte solutions at finite polymer concentration and low salt concentration ranges.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have