Abstract

We have developed a theory of counterion condensation in solutions of hydrophobic polyelectrolytes. In the framework of Oosawa's two-zone model we demonstrate that solutions of necklaces can be unstable with respect to phase separation. This phase separation is triggered by the concentration-induced counterion condensation. For the range of parameters at which the polyelectrolyte solution is stable, we predict nonmonotonic dependence of the chain size on polymer concentration. This nonmonotonicity in the chain size manifests itself in the dramatic increase in solution viscosity at the crossover to concentrated polyelectrolyte solution. There is also a possibility of two peaks in the scattering function of qualitatively different physical nature observed in different concentration regimes. The scattering intensity at the peak position increases with polymer concentration in low concentration (necklace) regime and decreases with concentration in concentrated polyelectrolyte solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.