Abstract

Micron-sized loops of high-mobility two-dimensional electron gas have been made on GaAs-AlGaAs heterostructures using a novel split-gate technique. Aharonov–Bohm oscillations of amplitude up to 20% of the device resistance have been observed at very low temperatures (T<100 mK), together with h/2e oscillations which appear to be due to interference between pairs of time-reversed paths near B=0. The h/e period is found to vary by ∼25% with magnetic field, possibly as a result of the formation of edge states. In the quantum Hall effect, plateaus in Rxx are seen at high B due to variations in carrier concentration across the ring, which may cause backscattering of some edge states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.