Abstract
Electron staining is generally performed prior to observing organic materials via transmission electron microscopy (TEM) to enhance image contrast. However, electron staining can deteriorate organic materials. Here, we demonstrate electrostatic potential imaging of organic materials via differential phase contrast (DPC) scanning transmission electron microscopy (STEM) without electron staining. Electrostatic potential imaging drastically increases the contrast between different materials. Phase-separated structures in a poly (3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend that are impossible to observe using conventional STEM are clearly visualized. Furthermore, annealing behavior of the phase-separated structures is directly observed. The morphological transformations in the samples are consistent with their physical parameters, including their glass transition and melting temperatures. Our results indicate that electrostatic potential imaging is highly effective for observing organic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.