Abstract

The purpose of this study is to make use of the advantages of both polyvinylidene fluoride (PVDF) and polyacrylonitrile (PAN) to fabricate a flexible electronic device. Polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN) composite fibrous mats with different blend ratios were fabricated using electrospinning. The effects of PVDF and PAN mass ratio on fiber morphology, chemical structure, thermal stability, and piezoelectric properties of the produced composite fibers were investigated by scanning electron microscopy (SEM), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), and piezoelectric tester. The SEM images showed that the PVDF/PAN composite nanofibers were fabricated successfully and fiber diameters increased with the increase of PVDF content. The FTIR and XRD analyses showed that both the α- and β-crystal phases existed in PVDF/PAN composite fibers. The thermal stability of PVDF/PAN fibrous mats was less than that of neat PVDF fibers. The piezoelectric properties of PVDF/PAN fibrous mats were significant and a function of PVDF content. The output voltage of PVDF/PAN fibrous mats increased from 1.2 to 5.0 V as PVDF content increased from 20 to 100%. The piezoelectric voltages of PVDF/PAN composite nanofibers also increased with the increase of impacting force. Tensile and contact angle testing indicated that the PVDF/PAN fibrous mats were more flexible and hydrophilic than neat PVDF membrane. PVDF/PAN nanocomposite fiber mats were observed suitable for potential application in flexible electronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call