Abstract
The electronic structure of spherical PbS and PbSe quantum dots is calculated with a four-band envelope-function formalism. This calculation accounts for both exciton energies and wave functions with the correct symmetry of the materials. The selection rules and the strength of the dipole transitions of lead-salt quantum dots are derived accounting for the symmetry of the band-edge Bloch functions of the lead salts. The calculated energies of the optically allowed exciton states are found to be in good agreement with experimental data. The effects of many-body perturbations, such as Coulomb interactions and intervalley scattering, are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.