Abstract

A new strategy for narrowing the size distribution of colloidal quantum dots (QDs) was developed by combining cation exchange and quantized Ostwald ripening. Medium-sized reactant CdS(e) QDs were subjected to cation exchange to form the target PbS(e) QDs, and then small reactant CdS(e) QDs were added which were converted to small PbS(e) dots via cation exchange. The small-sized ensemble of PbS(e) QDs dissolved completely rapidly and released a large amount of monomers, promoting the growth and size-focusing of the medium-sized ensemble of PbS(e) QDs. The addition of small reactant QDs can be repeated to continuously reduce the size distribution. The new method was applied to synthesize PbSe and PbS QDs with extremely narrow size distributions and as a bonus they have hybrid surface passivation. The size distribution of prepared PbSe and PbS QDs are as low as 3.6% and 4.3%, respectively, leading to hexagonal close packing in monolayer and highly ordered three-dimensional superlattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.