Abstract
Two-dimensional (2D) van der Waals (vdWs) ferroelectric heterostructures provide a platform to design multifunctional electronic devices. In this Letter, the 2D vdWs ferroelectric α-In2Se3/Cs3Bi2I9 heterostructures were constructed to investigate the appropriate band alignment, effective masses, charge transfer, and polarization switching barriers by employing first-principle calculation. The results show that the polarization reversal of α-In2Se3 engineers band alignment transition from type-II (α-In2Se3-P↑/Cs3Bi2I9) to type-I (α-In2Se3-P↓/Cs3Bi2I9), resulting in an indirect bandgap changing from 0.09 to 0.75 eV. Calculated electron effective masses are isotropic, which is smaller than those of anisotropic hole effective masses. Interfacial charges transfer from Cs3Bi2I9 to α-In2Se3, which can be ascribed to work function difference. By combining non-equilibrium Green's functions, the current–voltage characteristics of α-In2Se3/Cs3Bi2I9 based ferroelectric tunnel junction were investigated, and the current on/off ratio of 103 is resulted by spatial charge carrier separation and recombination. The proposed electron–hole separation transport design strategy provides a comprehensive theoretical support for the development of microelectronic storage devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.