Abstract
A series of ferric low-spin derivatives of myoglobin containing its natural prosthetic group, iron protoporphyrin IX, and reconstituted with iron heme s (a formyl-substituted porphyrin) and iron methylchlorin have been examined using low-temperature electron paramagnetic resonance (EPR) spectroscopy. Good agreement is observed between the EPR properties of parallel derivatives of natural myoglobin and heme s-myoglobin. Likewise, the EPR properties of parallel adducts of three types of iron chlorins, methylchlorin-myoglobin, sulfyomyoglobin (a myoglobin derivative known to contain a chlorin macrocycle) and synthetic chlorin models are similar to each other. The ferric chlorin systems are shown to exhibit increased tetragonality and decreased rhombicity values relative to protoporphyrin/formylporphyrin systems. Thus, EPR spectroscopy is a very useful technique with which to probe the coordination structure of naturally occurring iron chlorin proteins and the method can be used to distinguish between proteins containing iron formylporphyrins and iron chlorin prosthetic groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.