Abstract

Photoelectron imaging of the doubly deprotonated ethylenediaminetetraacetic acid dianion (EDTA2-) at variable wavelengths indicates two electron loss pathways: direct detachment and thermionic emission from monoanions. The structure of EDTA2- is also investigated by electronic structure calculations, which indicate that EDTA2- has two intramolecular hydrogen bonds linking a carboxylate and carboxylic acid group at either end of the molecular backbone. The direct detachment feature in the photoelectron spectrum is very broad and provides evidence for a dissociative photodetachment, where decarboxylation occurs rapidly after electron loss. Near 0 eV kinetic energy electrons are only observed in the photoelectron spectrum of EDTA2- at hν = 3.49 eV (high laser fluence), providing evidence for secondary electron loss via a two-photon process, mediated by an excited state of the decarboxylated anion, and likely resulting in a cyclic neutral product.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.