Abstract
We present a numerical model to study the electron cyclotron resonance (ECR) microwave discharge using a one-dimensional electromagnetic particle-in-cell Monte Carlo collision method [C. K. Birdsall, IEEE Trans. Plasma Sci. 19, 65 (1991)]. In our model, the electromagnetic wave is polarized circularly and propagates along an external static magnetic field and elastic, excitational, and ionizing electron-neutral collisions and elastic and charge exchange ion-neutral collisions are included. The discharge for helium gas is simulated and the simulation results explain well the physical properties of the ECR discharge which include the energy absorption of electrons through ECR coupling, the propagation of microwave, the transports of the charged particles, and the effect of divergent external magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.