Abstract

The influence of pulsed laser ablation of an aluminum target on the nitrogen plasma produced by electron cyclotron resonance (ECR) microwave discharge has been studied by optical emission spectroscopy (OES) with time and space resolution. The continuous wave (CW) feature of the optical emissions from the ECR nitrogen plasma turns to vary with time and space due to pulsed laser ablation and the expansion of the ablation-induced aluminum plume in the nitrogen plasma. The optical emissions from the nitrogen plasma increase significantly and the emission intensity of nitrogen molecular ions is observed to be more than 20 times higher with the target being ablated in comparison to the case without target ablation. The comparison of the optical emissions from the nitrogen plasma with those from the aluminum plume indicates that the excitation enhancement of the nitrogen plasma occurs in the region where the aluminum plume is expanding, revealing that the expansion of the aluminum plume leads to the excitation enhancement of the nitrogen plasma. Relevant mechanisms responsible for the excitation enhancement of the nitrogen plasma through hybrid processes of ECR microwave discharge and pulsed laser ablation are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.