Abstract
We present a theoretical and computational model to study the ionization of the electron cyclotron resonance (ECR) microwave discharge using a quasi-three-dimensional electromagnetic particle-in-cell plus Monte Carlo collision method. The simulation code is original. The detailed information about the distribution of charged particles and electromagnetic fields are obtained. We can conclude that the electrons absorb energy from microwave near the ECR region. Many electrons and ions are created through the ionization collisions between electrons and neutrals. And the distribution of charged particles vary gradually from anisotropic to isotropic by the frequently collisions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.