Abstract

A maskless electrohydrodynamic direct-writing lithographic strategy was presented to flexibly fabricate user-specific micropatterns on silicon substrates. By optimizing the operating parameters, parallel lines as well as lattices with line width of about 2 μm could be stably deposited. The printed micropatterns were found to function as sacrificial template to transfer microstructures into silicon substrates and the etching processes had little effect on the predefined size. It is envisioned that this simple approach provides an alternative to the existing microfabrication techniques, which might enable the wide accessibility of microscale technologies to advance various research fields such as microfluidics, biomedical chips, and microscale tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call