Abstract

Electrochemical double layers (EDLs) govern the operation of batteries, fuel cells, electrochemical sensors, and electrolyzers. However, their invisible nature makes their properties and function difficult to conceptualize, creating an impediment to the broader understanding of double-layer function required for future technologies in energy storage and chemical synthesis. To render the behavior of electrochemical interfaces more intuitive, we made the rearrangement of interfacial components audible by employing the EDL as a variable element in a relaxation oscillator circuit. Connecting the circuit to a speaker generated an audible output corresponding to the change in potential resulting from EDL rearrangement. Variations in the applied voltage, electrolyte concentration and identity, as well as in the electrode material, yielded audible frequency variations that provide an intuitive understanding of EDL behavior. We expect that hearing the trends in behavior will provide a helpful and alternative method for understanding molecular movement at the electrochemical interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call