Abstract

The development of high-performance gas diffusion electrodes is essential for the fabrication of efficient proton exchange membrane water electrolyzers (PEMWEs) and thus for clean hydrogen production. Herein, we electrodeposited Fe-based binary and ternary phosphides on porous carbon paper (CP) as a substrate and demonstrated that, under optimized deposition conditions (i.e. when the P content was maximum), amorphous FeCoP showed the highest intrinsic activity for hydrogen evolution in an acidic medium. This behavior was ascribed to appropriate electronic structure modification and the alloying effect. Further enhancement of hydrogen evolution performance was achieved by increasing the electrochemical surface area of FeCoP by using a porous Cu foam (CF) support. In a half-cell test, the FeCoP/CF/CP electrode featured an acceptably stable cathodic current of −10 mA/cm2 at an overpotential of −125 mV. A PEMWE single cell with an FeCoP/CF/CP cathode exhibited a current density of 0.95 A/cm2 at a cell voltage of 2.0 V, which is superior to or comparable with previously reported values. Thus, the developed electrode might be a promising alternative to Pt-based cathodes in practical PEMWE applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.