Abstract

Per- and poly-fluoroalkyl substances (PFAS), a contentious group of highly fluorinated, persistent, and potentially toxic chemicals, have been associated with human health risks. Currently, treatment processes that destroy PFAS are challenged by transforming these contaminants into additional toxic substances that may have unknown impacts on human health and the environment. Electrochemical oxidation (EO) is a promising method for scissoring long-chain PFAS, especially in the presence of natural organic matter (NOM), which interferes with most other treatment approaches used to degrade PFAS. The EO method can break the long-chain PFAS compound into short-chain analogs. The underlying mechanisms that govern the degradation of PFAS by electrochemical processes are presented in this review. The state-of-the-art anode and cathode materials used in electrochemical cells for PFAS degradation are overviewed. Furthermore, the reactor design to achieve high PFAS destruction is discussed. The challenge of treating PFAS in water containing NOM is elucidated, followed by EO implementation to minimize the influence of NOM on PFAS degradation. Finally, perspectives related to maximizing the readiness of EO technology and optimizing process parameters for the degradation of PFAS are briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.