Abstract

Constructing a novel nanocomposite structure based on Co3O4 is of the current interest to design and develop efficient electrochemical capacitors. The capacitive performance of MoO3@Co3O4 nanocomposite is compared with pristine Co3O4 nanoparticles, both of them being synthesized by hydrothermal technique. A BET surface area of ∼41 m2 g−1 (almost twice that of Co3O4 ) and average pore size of 3.6 nm is found to be suitable for promoting Faradaic reactions in the nanocomposite. Electrochemical measurements conducted on both samples predict capacitive behavior with quasi-reversible redox reactions. MoO3@Co3O4 nanocomposite is capable of delivering a superior specific capacitance of 1248 F g−1 at 0.5 A g−1 along with notable stability of 92% even after 2000 cycles of charge–discharge and Coulombic efficiency approaching 100% at 10 A g−1. The outstanding results obtained in this work assure functional adequacy of MoO3@Co3O4 nanocomposite in fabricating high-performance electrochemical capacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.