Abstract

Various pesticides employed in modern agriculture result in large amounts of pesticide residues in agricultural production, greatly threatening human health. Herein, we report a facile approach to fabricate a reduced graphene oxide/cyclodextrin modified glassy carbon electrode (rGO/CD/GCE) for the sensitive electrochemical sensing of imidacloprid (IDP). Three different modified electrodes using CDs (α-, β-, γ-CD) were fabricated, and their electrochemical performance was further studied. The results demonstrate that α-CD possesses the best signal amplification for IDP. Compared with wet-chemical synthesis of rGO/CDs (W-rGO/CDs), the electrochemical synthesis of rGO/CDs (E-rGO/CDs) produced sensors that showed better performance for IDP sensing. Taking advantage of prepared E-rGO/α-CD nanocomposite, the fabricated sensor offered a low detection limit (0.02 μM) with a wider linear range (0.5–40 μM) and long-term stability. The new sensor was successfully applied for the detection of IDP in brown rice, providing a new technique for efficient and convenient monitoring of pesticide residues in food.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call