Abstract

AbstractTransitioning from fossil fuels to renewable energy sources is demanded due to the gradual depletion of petroleum oil/gas and the environmental impact of carbon dioxide (CO2) emissions into the atmosphere. Electrocatalytic and photocatalytic CO2 reduction to methane (CH4) using renewable energy sources is crucial for sustainable chemical/fuel production and greenhouse gas reduction. In recent years, extensive research has focused on understanding the fundamental aspects of the two approaches, such as reaction mechanisms and active sites, and exploring/designing novel catalytic materials. This review initially discusses the reaction fundamentals, including performance evaluation indexes, reactors, and mechanisms, to understand the catalytic reactions. Subsequently, various catalyst preparation strategies and characterization methods are summarized, trying to outline the catalyst design principle based on the obtained understanding of the reaction mechanisms. Finally, research challenges and perspectives for future development in this area are discussed and presented. It is expected to provide a comprehensive understanding of the photo/electrocatalytic CO2 methanation, valuable knowledge to novice researchers, and a helpful reference for future research endeavors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.