Abstract

The gradual increase in carbon dioxide (CO2) concentration in the atmosphere has been recognized as a significant problem for humankind. CO2 flue gas is one of the most apparent contributing sources of emissions. CO2 capture and conversion are environmental-friendly and efficient ways to reduce atmospheric carbon dioxide emissions from flue gases. Considering the traditional expensive gas purification process of low-concentration CO2, the low-cost capturing and electrocatalytic CO2 reduction (ECR) at low concentration by newly-developed carbon-based materials provide an attractive approach to convert low-concentration CO2 in flue gas into high-value fuels and chemicals. Developing and integrating carbon-based capturing and catalytic materials with an understanding of the mechanism has a promising future and will promote this technology toward practical application. This review describes recent progress in the design, preparation, and structural characterization of existing carbon-based materials for the capture and catalysis of low-concentration CO2. The crucial factors of capturing and catalysis performance of all the carbon-based materials are also summarized. Furthermore, the review identifies existing research problems and challenges, and outlines future research directions. We also discuss the prospects for the industrialization of low-concentration CO2 capture and ECR. The remaining technological challenges and future directions for enhancing and applying of carbon-based materials for CO2 capture and electrocatalytic reduction are highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.