Abstract

Since the introduction of tissue engineering (TE) concept for repair or regeneration of failed tissues/organs, this novel interdisciplinary field has progressed significantly. In this context, cells, signal molecules, and scaffolds are the key fundamental elements which required for a successful TE. Among these, scaffold as an artificial extracellular matrix (ECM) has a prominent role in cell attachment, differentiation, orientation, proliferation, and new tissue formation. Moreover, stimulants such as electric field (EF) affect different aspects of cellular performances, including polarity, wound healing, division, and differentiation. In this respect, simultaneous usage of natural polysaccharides and electrically conductive polymers can be considered as a new strategy to produce composite biomaterials as suitable scaffolds with superior physicochemical and biological properties. This review focuses on the simultaneous usage of natural polysaccharides and electrically conductive polymers for the fabrication of bio-scaffold and investigation of their performance in TE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call