Abstract

Ferroelectricity is attractive in data storage application as the polarizations can be used as binary levels. However, conductivity and ferroelectricity cannot be tuned independently in inorganic materials, thus two-terminal resistive memories with ferroelectrics are yet to be achieved. Here, we present an all-polymer-based system of semiconductor/ferroelectrics/semiconductor. Electrical switching behavior, which is critical to resistive memories, is observed. The mechanism of the conduction transition is attributed to the transmission probability of charge carriers tuned by electrical polarization. The importance of polarization in controlling the charge transport deserves further investigation for the realization and optimization of the two-terminal resistive memories with ferroelectrics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call