Abstract

Super ion conducting glasses of composition D%AgI-(100-D)%[MAg2O-F{(F1)B2O3- (F2)TeO2}]; D=10.0 to 60.0 in steps of 10.0 for a fixed values of F1 (0.4), F2 (0.6) which are glass network formers, fixed values of modifier M(0.667), F (0.333) and D is dopant salt which was varied. These glasses were prepared by melt quenching technique. XRD spectra taken for all the samples. Electrical characterization was done in terms of AC and DC conductivities. DC and AC conductivities at room temperature increased from 10-5 to 10-1 scm-1 and DC activation energy (Edc) found to decrease from 0.36 to 0.19eV with increase in D% ratio. Measurements are performed over the frequency range 1 kHz to 3 MHz at different temperatures. From the impedance spectroscopy real and imaginary parts of impedances (Z', Z"), conductivities were calculated and plotted, and equivalent R-C circuit parameters were obtained from Cole-Cole plots. With the increase in D%, AC conductivity is observed to increase whereas the AC activation energy (Eac) is observed to decrease from 0.23 to 0.14 eV. The quantitative analysis of these results indicates that the electrical conductivity of silver borate glasses is enhanced with increase in D% ratio. Based on conductivity values these glasses are ionic conductors, in which conduction is by hopping mechanism. An attempt is made to understand the charge transportation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call