Abstract
We propose solution-processed In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) with multistacked active layers for detecting artificial deoxyribonucleic acid (DNA). Enhanced sensing ability and stable electrical performance of TFTs were achieved through use of multistacked active layers. Our IGZO TFT had a turn-on voltage (V(on)) of -0.8 V and a subthreshold swing (SS) value of 0.48 V/decade. A dry-wet method was adopted to immobilize double-crossover DNA on the IGZO surface, after which an anomalous hump effect accompanying a significant decrease in V(on) (-13.6 V) and degradation of SS (1.29 V/decade) was observed. This sensing behavior was attributed to the middle interfaces of the multistacked active layers and the negatively charged phosphate groups on the DNA backbone, which generated a parasitic path in the TFT device. These results compared favorably with those reported for conventional field-effect transistor-based DNA sensors with remarkable sensitivity and stability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have