Abstract

It is demonstrated that the now well-established "flip-flop" mechanism of spin exchange between electrons and nuclei in the quantum Hall effect can be reversed. We use a sample geometry which utilizes separately contacted edge states to establish a local nuclear spin polarization--close to the maximum value achievable--by driving a current between electron states of different spin orientation. When the externally applied current is switched off, the sample exhibits an output voltage of up to a few tenths of a mV, which decays with a time constant typical for the nuclear spin relaxation. The surprising fact that a sample with a local nuclear spin polarization can act as a source of energy and that this energy is well above the nuclear Zeeman splitting is explained by a simple model which takes into account the effect of a local Overhauser shift on the edge state reconstruction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.