Abstract

Based on a generalized side-jump formalism for massless chiral fermions, which naturally takes into account the spin-orbit coupling in the scattering of two chiral fermions and the chiral vortical effect in a rotating chiral fermion matter, we have developed a covariant and total-angular-momentum-conserved chiral transport model to study both the global and local polarizations of this matter. For a system of massless quarks of random spin orientations and finite vorticity in a box, we have demonstrated that the model can exactly conserve the total angular momentum of the system and dynamically generate the quark spin polarization expected from a thermally equilibrated quark matter. Using this model to study the spin polarization in relativistic heavy-ion collision, we have found that the local quark spin polarizations depend strongly on the reference frame where they are evaluated as a result of the nontrivial axial charge distribution caused by the chiral vortical effect. We have further shown that because of the anomalous orbital or side-jump contribution to the quark spin polarization, the local quark polarizations calculated in the medium rest frame are qualitatively consistent with the local polarizations of Lambda hyperons measured in experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call