Abstract

Experimental investigations of the phase diagram of strongly interacting matter involve collisions of heavy ions at ultrarelativistic velocities. The medium created in such a collision is often of dimensions a few fermi, in particular in the Beam Energy Scan experiments. An understanding of the effect of the finite volume and the boundary is important for connecting the experimental results to the phase diagram.Using the Nambu Jona-Lasinio model, an effective theory for the chiral transition of quantum chromodynamics (QCD), we have studied the effect of the finite volume of the fireball on the transition line at finite temperature and density using the MIT boundary condition to mimic the condition that the system is deconfined inside. We studied the effect of the finite volume on the transition temperature and on number density and its susceptibilities. The volume effects should be considered when looking for signatures of the phase diagram in experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.