Abstract

We fabricated and characterized hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) with a channel length of 10 on both spherical and flat surfaces using maskless laser-write lithography (LWL). In addition to the electrical performance, the threshold voltage shift of the a-Si:H TFT under bias-temperature stress is investigated and discussed in comparison to a device fabricated on a flat surface. The obtained results show that the a-Si:H TFTs fabricated by LWL method on a curved surface are suitable for pixel switches and circuits, which are needed to realize image sensor arrays and/or displays on a nonplanar surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.