Abstract

Pure spin currents are generated and detected in micron-wide channels of a GaAs two-dimensional electron gas, using quantum point contacts in an in-plane magnetic field as injectors and detectors. The enhanced sensitivity to spin transport offered by a nonlocal measurement geometry enables accurate spin current measurements in this widely studied physical system. The polarization of the contacts is used to extract the quantum point contact g factor and provides a test for spontaneous polarization at 0.7 structure. The spin relaxation length in the channel is 30-50 microm over the magnetic field range 3-10 T, much longer than has been reported in GaAs two-dimensional electron gases but shorter than that expected from Dyakonov-Perel relaxation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.