Abstract

We study a method to generate pure spin current in monolayer graphene over a wide range of Fermi energy by adiabatic quantum pumping. The device consists of three gate electrodes and two ferromagnetic strips, which induce a spin-splitting in the graphene through the proximity effect. A pure spin current is generated by applying two periodic oscillating gate voltages. We find that the pumped pure spin current is a sensitive oscillatory function of the Fermi energy. Large spin currents can be found at Fermi energies where there are Fabry–Perot resonances in the barriers. Furthermore, we analyze the effects of the parameters of the system on the pumped currents. Our predicted pumped spin current can be of the order of 100 nA which is measurable using the current technology. The proposed method is useful in the realization of graphene spintronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.