Abstract

Diamond thin films grown on high resistivity, 〈100〉 oriented silicon substrates by the hot filament chemical vapor deposition (HFCVD) method have been characterized by four-point probe and current-voltage (through film) techniques. The resistivities of the as-grown, chemically etched and annealed samples lie in the range of 10 2 Ω cm to 10 8 Ω cm. The Raman measurements on these samples indicate sp 3 bonding with a sharp peak at 1332 cm −1. The surface morphology as determined by scanning electron microscope shows polycrystalline films with (100) or (111) faceted structures with average grain size of ≈2.5 μm. The through film current-voltage characteristics obtained via indium contacts on these diamond films showed either rectifying or ohmic behavior. The difference in Schottky and ohmic behavior is explained on the basis of the high or low sheet resistivities measured by four-point probe technique. 5% methane to hydrogen concentration during film growth resulted in poor surface morphology, absence of sp 3 bonds, and low resistivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.