Abstract
The present study reports the electrospinning of TiO2-graphene composite nanofibers to develop conductive nano-fiber mats using polyvinylpyrrolidone as a carrier solution. This carrier solution was sublimated at 450 °C to attain a complete conducting continuous nanofibrous network. It was observed during the annealing that as the graphene content was increased to 1 wt% the continuous fiber morphology was lost. Annealing did not have any impact on the fiber diameter (∼150 nm) or morphology as the graphene content was maintained between 0.0–0.7 wt%. The surface porosity of these samples was found be in the range of 45–48%. The presence of graphene in TiO2 nanofibers was confirmed using Raman spectroscopy. Photoluminescence spectroscopy showed excitonic intensity to be lower in graphene-TiO2 samples indicating that the recombination of photo-induced electrons and holes in TiO2 can be effectively inhibited in the composite nanofibers. Fluorescence spectroscopy was used to confirm this phenomenon where blue and quenched emissions were observed for the electrospun TiO2 nanofibers and composite fibers, respectively. Conductivity measurements showed the mean specific conductance values obtained for TiO2-graphene composites to be about two times higher values than that of the electrospun TiO2 fibers. Assembling these TiO2-graphene fiber composites as photoanodes in dye sensitized solar cells, an efficiency of 7.6% was attained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.